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Abstract 
The Space Telecommunications Radio System (STRS) 

Architecture Standard describes a standard for NASA space 
software defined radios (SDRs). It provides a common 
framework that can be used to develop and operate a space 
SDR in a reconfigurable and reprogrammable manner. One 
goal of the STRS Architecture is to promote waveform reuse 
among multiple software defined radios. Many space domain 
waveforms are designed to run in the special signal processing 
(SSP) hardware. However, the STRS Architecture is currently 
incomplete in defining a standard for designing waveforms in 
the SSP hardware. Therefore, the STRS Architecture needs to 
be extended to encompass waveform development in the SSP 
hardware. The extension of STRS to the SSP hardware will 
promote easier waveform reconfiguration and reuse. A 
transmit waveform for space applications was developed to 
determine ways to extend the STRS Architecture to a field 
programmable gate array (FPGA). These extensions include a 
standard hardware abstraction layer for FPGAs and a standard 
interface between waveform functions running inside a FPGA. 
A FPGA-based transmit waveform implementation of the 
proposed standard interfaces on a laboratory breadboard SDR 
will be discussed. 

1. Introduction 
The Space Telecommunications Radio System (STRS) 

Architecture Standard (ref. 1) specifies an open architecture 
for NASA space software defined radios (SDRs). The STRS 
Architecture Standard divides the SDR into three functional 
hardware modules – the general processing module (GPM), 
the radio frequency module (RFM), and the signal processing 
module (SPM). There is a hardware interface description 
(HID) between each module that describes all of the physical 
hardware interfaces. The GPM contains a general purpose 
processor (GPP), memory, and the Spacecraft Telemetry 
Interface. The GPM runs the STRS Infrastructure and 
configures and controls the entire radio. The RFM contains 
filters, up/down converters, power amplifiers, digital to analog 
converters (DACs), and analog to digital converters (ADCs). 
It handles the conversion between the radio frequency (RF) 
and the intermediate frequency (IF) signals. The SPM may 

contain a field programmable gate array (FPGA), digital signal 
processor (DSP), application specific integrated circuit 
(ASIC), or other specialized signal processing (SSP) device. 
The SPM performs the transformations between the IF 
digitally sampled signals and the data packets. These 
transformations are currently the reconfigurable part of the 
SDR waveforms. A drawing of the functional hardware 
modules of the STRS Architecture is shown in figure 1. 

It is desirable to place a space waveform in the FPGA due 
to the reconfigurable nature of the device and the ability to 
support high digital data rates. However, the STRS 
Architecture only specifies high-level standards for 
waveforms developed in the FPGA. In order to explore 
extending the STRS Architecture to lower level standards for 
the FPGA, a transmit waveform for space applications was 
developed. This development has lead to initial concepts for 
developing a firmware-based STRS compliant waveform that 
is reconfigurable and reusable. These concepts are the first 
steps towards extending the STRS Architecture standard to the 
firmware inside the FPGA. 

A brief outline of the rest of the paper follows. The 
development goals for the waveform will be discussed in 
section 2. The current STRS Architecture’s support of these 
goals is discussed in section 3. Section 4 describes proposed 
extensions to the STRS Architecture that more fully support 
STRS goals, and section 5 discusses lab-based 
implementations of the extensions. Finally, section 6 describes 
future work. 

2. Waveform Development Goals 
2.1. Design a waveform that is reconfigurable 

Reconfigurability is the ability to modify functionality of a 
radio by changing the operational parameters without 
requiring a software update. One reason to reconfigure a space 
SDR may be in response to changes in environmental or 
physical conditions experienced by the spacecraft. Another 
need for SDR reconfiguration is that the same communication 
network might use several variations of one waveform to 
perform different operations (e.g., different phases of a 
mission or modes of spacecraft operations). There could be 
little or no operational down time during reconfiguration. 
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Figure 1.—STRS Hardware Architecture Diagram. 

2.2. Design a waveform that is reusable and portable 
across different SDRs 

Reusability is the degree to which a software module or 
other work product can be used in more than one computing 
program or software system. The number of waveforms being 
used by NASA is limited and unlikely to increase or 
dramatically change. Reusing all or part of the code for this 
limited number of waveforms will decrease development time 
and cost and increase reliability. It is desired that both the 
individual waveform functions and the entire waveform as a 
whole be reusable. A waveform developer should be able to 
port individual waveform functions between SDR platforms. 
This might include replacing individual functions in a 
waveform, or reusing individual functions across several 
waveforms. A waveform developer should also be able to 
easily port entire waveforms to many different SDR platforms. 

2.3. Design a waveform that is platform independent 

One way to promote waveform reusability is to start with a 
platform independent design methodology. The highest level 
of abstraction of the waveform design should be platform 
independent. This might be a platform independent simulation 
tool model, or HDL code that is written in a platform 
independent manner.  

3. Current STRS Architecture Standard 
The current STRS Architecture Standard enables many of 

the waveform design goals listed in section 2 to be achieved. 
The STRS Architecture is more defined for the GPM than the 
SPM. This section describes how the current software and 

firmware sections of the architecture enable the waveform 
design goals to be met, but also points out some shortcomings. 

The software section of the STRS Architecture Standard 
specifies a common way to reconfigure waveform parameters 
on a space SDR without waveform reloading. The STRS 
Infrastructure running on the GPP specifies the use of STRS 
Application Program Interface (API) calls. These STRS API 
calls utilize device drivers on the GPP which interface to 
corresponding devices on the SPM or RFM. These APIs 
include the STRS_DeviceRead, STRS_DeviceWrite, 
STRS_DeviceGetAttribute, and STRS_DeviceSetAttribute 
APIs. They can be used to control and reconfigure the 
waveform components that reside in the FPGA. 

The software section of the STRS Architecture Standard 
supports the ability to remotely reprogram a compliant SDR 
with a different compliant waveform. The STRS_LoadDevice 
API can load a bit file that has been sent to a radio onto a 
FPGA or other device. In this way, a new waveform can be 
remotely loaded onto a FPGA. 

The software section of the STRS Architecture Standard 
specifies standard APIs that interface to waveform functions 
running on the GPP. Therefore, code that is written on the 
GPP is portable and reusable across different SDRs. Software 
is platform independent because it is written in a high-level 
language like C. 

The firmware section of the STRS Architecture Standard 
supports the use of model based firmware design techniques. 
Models can be developed using platform independent design 
techniques, but they could also be platform specific. The 
firmware architecture also supports the use of modularity and 
clear interfaces in waveform design and modeling. However, 
the firmware architecture does not define these interfaces in 
detail. 

The firmware section of the STRS Architecture Standard 
supports reusable firmware-based waveforms through the use 
of a common waveform library. It also specifies an internal 
HID and an external HID. Device drivers are used to interface 
to the internal and external HID. The internal HID is an 
interface between devices on the SPM. The external HID is a 
set of interfaces from each device on the SPM to the GPM and 
RFM. However, these interfaces are not specifically defined. 
Waveforms could be more reusable and portable if a common 
interface would be defined. 

4. Proposed Extensions to STRS 
There are two proposed extensions to the STRS 

Architecture Standard to further promote waveform portability 
and reuse. The proposed extensions were developed from the 
experience of designing a transmit waveform for space 
applications. The extensions are a Waveform Function 
Interface (WFI) and a Firmware Developer Interface (FDI). 
The WFI defines interfaces between waveform functions. The 
FDI abstracts the device drivers between the waveform 
application and devices external to FPGA, presenting a  
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Figure 2.—Conceptual drawing of the Firmware Developer 
Interface and the Waveform Function Interface in the FPGA. 

 
standard interface to the firmware-based waveform functions. 
A conceptual drawing of the FDI and WFI on the FPGA is 
shown in figure 2. The FDI and WFI could be extended to 
other non-FPGA SPM devices, but the focus of this paper is 
on standardization in FPGAs. 

4.1. Waveform Function Interface 

The reuse of individual waveform functions was 
accomplished in this waveform development by two design 
practices. The waveform was divided into functions that were 
visible at the top level of the design. Next, these functions 
were separated from each other by common interfaces. The 
example of a modulator function, shown in figure 3, 
demonstrates these interfaces. These interface definitions will 
allow a future user to easily reuse the function. 

To aide in waveform reconfiguration, each individual 
waveform function was designed to accommodate all desired 
permutations of operation. Control over these permutations is 
achieved through a control signal, as shown in figure 3. The 
waveform controller, which manages the state and behavior of 
the waveform, has access to all such control signals and can 
change them in real time. The enable signal shown in figure 3 
is a specific instance of a control signal. Thus the functionality 
of the SDR can be quickly reconfigured by properly 
controlling these signals without reprogramming the SDR with 
a new waveform. 

These common interface definitions are proposed to be 
called the Waveform Function Interface (WFI). A standard 
WFI will promote modularity and enable waveform function 
reuse. It will allow individual waveform functions to be both 
ported to different platforms and reused among different 
waveforms. A critical component of the WFI is extensive 
 

 

 

Figure 3.—Example waveform function. 
 

documentation of all signals. Expected information on each 
signal includes data types, bit widths, and active low or active 
high for a control signal.  There are other proposed signals in 
addition to the signals shown in figure 3. The proposed WFI is 
described in table 1. 
 

TABLE 1.—WAVEFORM FUNCTION INTERFACES 
Waveform function interfaces 

Direction Signal Description 
IN Data Input data 
IN Clock Directed to the function from the 

clock manager 

IN Enable Specific type of control signal 
IN Reset Specific type of control signal 
IN Control(s) Signal from controller or another 

function 
OUT Data Output data 
OUT Control(s) Status signals about function state or 

control signals going to another 
function 

 

4.2. Firmware Developer Interface 

There are several design practices that were used to 
promote reuse of the entire waveform. First, the waveform 
was designed in a development environment that is FPGA 
platform independent. Platform specific VHDL that could 
target any FPGA was auto-generated from this platform- 
independent design using commercial software design tools. 
Therefore, this waveform development focused on algorithm 
development and the design tool automatically optimized area 
and speed constraints for the target FPGA. Next, the 
waveform was designed to contain minimal external interfaces 
to resources outside the FPGA. Limiting the waveform 
dependency on SDR platform hardware devices external to the 
FPGA enables reuse across many different STRS compliant 
SDR platforms.  

Another way to minimize waveform dependency on devices 
external to the FPGA is to define a set of common external 
interfaces. The proposed set of common external interfaces is 
called the Firmware Developer Interface (FDI). The FDI is a 
common set of interfaces, but the implementation of those 
interfaces is not specified. The implementation and 
documentation of the FDI is the platform designer’s 
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responsibility. The waveform designer will use the FDI to 
access radio platform devices outside the FPGA. 

There are two types of FDIs proposed: the control FDI and 
the data FDI. The control and data FDIs have the capability to 
both read from and write to devices external to the FPGA. 

The control FDI provides a control interface into the FPGA. 
A waveform controller running on another device, such as the 
GPP, would use this interface to control the waveform 
functions running in the FPGA. This control interface is 
currently defined for the situation in which the GPP is the 
master and the FPGA is the slave. The control interface 
consists of data, address, clock, and enable signals. The data 
address (DATA, ADDRESS) pairs in the FDI should 
correspond to the name value (NAME, VALUE) pairs in the 
STRS_DeviceRead, STRS_DeviceWrite, STRS_DeviceGet-
Attribute, and STRS_DeviceSetAttribute APIs on the GPP. 
The proposed control FDI signals are shown in table 2. The 
proposed common FDI DATA and corresponding API NAME 
pairs are shown in table 3. 

 

TABLE 2.—CONTROL FDI SIGNALS 
Control FDI 

Read 
Direction Name 

IN ControlRDY 
IN Address 
IN Data 
OUT Clock 

Write 
Direction Name 

IN ControlRDY 
IN Address 
OUT Data 
OUT Clock 

 
TABLE 3.—CORRESPONDING FDI DATA AND API 

NAME PAIRS 
FDI DATA API NAME 

FDI_START/STOP API_ START/STOP 
FDI_DATA_RATE API_ DATA_RATE 
FDI_DATA_FORMAT API_ DATA_FORMAT 
FDI_MODULATION API_ MODULATION 
FDI_IF API_ IF 
FDI_CODING API_ CODING 
FDI_AGC_GAIN API_ AGC_GAIN 
FDI_FUNCTION_ENABLE API_ FUNCTION_ENABLE 
FDI_FUNCTION_RESET API_ FUNCTION_RESET 
 
The data FDI is an interface to a hardware device where a 

continuous data stream is needed. The data FDI signals can be 
used with or without handshaking signals. The minimum data 

FDI signals without handshaking are proposed to be data, 
clock, and enable, as shown in table 4. Handshaking signals 
for the data FDI will be defined in the future. It is up to the 
waveform developer to choose the type of signals to use, but 
both the minimum signals and handshaking signals must be 
implemented by the platform provider. 

 
TABLE 4.—DATA FDI SIGNALS 

Data FDI 
Read 

Direction Name 
IN Data 
OUT Enable 
OUT Clock 

Write 
Direction Name 

OUT Data 
OUT Enable 
OUT Clock 

 
There should also be a standard set of interfaces to the 

clock manager on the FPGA. The clock manager generates the 
clocks that are used in the FPGA. These interfaces are not 
defined in this paper, but their documentation by the platform 
provider is part of the proposed extension. 

5. Implementation Examples 
The WFI and the FDI have both been implemented in the 

lab. The WFI has been implemented on a transmit waveform 
and the FDI has been implemented on a FPGA in a space 
software defined radio. However, they have not yet been 
integrated together on one radio. 

5.1. Waveform Function Interface 

Figure 4 shows a top level block diagram of the transmit 
waveform that was implemented. The waveform is separated 
into functions at the highest level of abstraction. The WFI is 
defined in between these functions. The WFI signals that were 
implemented include the data, clock, control, and enable 
signals. 

Table 5 lists example documentation for the WFI signals 
that were implemented in the convolutional encoder function 
of the transmit waveform shown in Figure 4. The input clock 
rate is 2 MHz. The input data signal is 1 bit in width, has a rate 
of 1 Mbps, and has symbols formatted as NRZ-L. The control 
signal is 1 bit in width. It allows for 1/2 rate convolutional 
encoding or no encoding of the input signal. The input/output 
enable signal is active high. The output data signal is 1 bit in 
width, has a rate of 2 Mbps, and has symbols formatted as 
NRZ-L. 
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Figure 4.—Waveform Implementation with the Waveform Function Interface. 
 
 
 

 
Figure 5.—Implementation example of the Firmware Developer Interface. 

 
 

TABLE 5.—WAVEFORM FUNCTION INTERFACES FOR 
THE CONVOLUTIONAL ENCODER 

Convolutional encoder waveform function interfaces 
Direction Signal Description 

IN Data 1 bit, 1 Mbps, NRZ-L symbols 
IN Clock 2 MHz 
IN Enable Active high 
IN Controls 0 – No encoding 

1 – ½ Rate encoding 
OUT Data 1 bit, 2 Mbps, NRZ-L symbols 
OUT Enable Active high 
 

5.2. Firmware Developer Interface 

The control and data FDIs have been implemented on a 
space SDR breadboard. The FDI has been implemented to 
replace the platform specific wrapper supplied by the platform 
vendor, so that there is not an impact on performance. Test 
functions have been created to use the FDI to interface with 
components on both the GPM and the RFM. A diagram of the 
interfaces that were implemented is shown in figure 5. 

The interface to the GPM was more difficult to implement 
because the GPM HID consisted of an address bus and a data 
bus, but the FDI was implemented to abstract the HID from  
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the firmware as a control read/write and a data read/write. The 
control read interface was implemented using an asynchronous 
first in first out (FIFO) memory. The test waveform 
application in the FPGA could read a data address pair when 
the ControlRDY signal was asserted. The control write signal 
could not be implemented with a FIFO because of the GPP 
master FPGA slave data flow configuration. When the 
ControlRDY signal was asserted, the waveform application 
would place the data that corresponded to the requested 
address on the bus. The data read/write functions were 
implemented with asynchronous FIFOs. The enable signals 
indicated when a read or write operation was performed. 
Although these interfaces were implemented as separate 
interfaces to the firmware developer, the actual HID between 
the FPGA and the GPP consisted of a single common address 
and a data bus. 

The interface to the ADC and DAC was very simple to 
implement. The enable signal indicated when the read or write 
was performed. The devices were also given a clock signal. 
The FDI implementation did not address ADC/DAC bit width 
variations. However, in the future a variable bit width control 
parameter could be added to the FDI. 

The clocks that were generated by the clock manager were 
fed into the test waveform application for use by the 
waveform. However, the test waveform did not control the 
clock rate. It simply used the provided clocks as necessary. 

6. Future Work 
The proposed additions to the STRS Firmware Architecture 

Standard are the WFI and the FDI. The WFI is a set of 
common interfaces between waveform functions on the 
FPGA. The FDI is a common set of external firmware 
interfaces to devices outside the FPGA. The FDI on the FPGA 
and the WFI in the waveform have been implemented and 
tested separately. The integration of the two implementations 
is the next step. Plans are to target the platform on which the 
working FPGA FDI is implemented with the WFI-based 
transmit waveform. The ability to reconfigure the FPGA using 
the WFI and FDI will be demonstrated using controls from the 
STRS Infrastructure in the GPP. The FDI will then be 
implemented on another SDR platform and the waveform 
ported to that second platform. This will test and demonstrate 
how the proposed extensions to the STRS Firmware 
Architecture Standard enable waveform reusability, 
portability, and reconfiguration. 
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